معاملات با فرکانس بالا


مفاهیم پایه معامله گری الگوریتمی

معامله گری الگوریتمی که به آن معامله گری خودکار نیز گفته می‌شود به نوعی معامله گری گفته می‌شود که در آن از برنامه‌نویسی کامپیوتری برای انجام معاملات طبق استراتژی و توضیحاتی که توسط خود معامله گر به آن داده شده برای انجام معامله استفاده می‌کند. این معامله‌ها می‌توانند با سرعتی که برای انسان غیرقابل اجرا است انجام ‌شود.

دستورات داده شده به برنامه بیشتر بر پایه تحلیل پارامترهای زمان، قیمت، کمیت و مدل‌های ریاضی است. جدا از سود سرشاری که این نوع معامله گری می‌تواند برای معامله‌گر داشته باشد، معامله گری الگوریتمی می‌تواند منجر به افزایش میزان نقدینگی در بازار شود و همچنین با از بین بردن عامل احساسات از معامله گری، انجام معاملات را پویا­تر و منظم‌­تر می‌نماید.

معاملات الگوریتمی در عمل چگونه کار می‌کند؟

  • ۵۰ سهم از سهام ایکس را زمانی که میانگین متحرک ۵۰ روزه به بالای میانگین متحرک ۲۰۰ روزه رفت بخرید.

با استفاده از این دو دستور ساده، کامپیوتر به صورت خودکار بازار سهام را زیر نظر می‌گیرد و دستور خرید یا فروش را در زمان مناسب اعمال می‌کند. این اتفاق، معامله‌گر را از این که بازار را در تمام مدت زیر نظر بگیرد بی‌نیاز می‌کند چرا که سیستم معامله گری الگوریتمی این عمل را به صورت خودکار انجام می‌دهد.

معامله گری الگوریتمی | گروه مالی شریف | مفاهیم پایه معامله گری الگوریتمی

مزایای معامله گری الگوریتمی

  • معامله‌ها در بهترین قیمت انجام می‌پذیرد؛
  • قرار دادن و انجام معامله واضح و به سرعت انجام می‌شود؛
  • قابلیت انجام معامله در بازار‌های مختلف وجود دارد؛
  • از اشتباهات فردی در تحلیل‌ها جلوگیری می‌شود؛
  • قابلیت تست گرفتن سیستم بر اساس اطلاعات گذشته در آن وجود دارد؛
  • از رخ دادن اشتباهات انسانی بر پایه رفتار احساسی و روانشناسی جلوگیری می‌شود.

بیشتر معاملات الگوریتمی امروزه معامله با فرکانس بالا می‌باشند که توانایی انجام معاملات سریع در بازارهای مختلف بر اساس پارامتر‌های تصمیم‌گیری چندگانه را بر اساس دستورات برنامه‌ریزی شده دارا می‌باشند.

مزایای معاملات الگوریتمی در بازار سرمایه و جایگاه ایران میان رقبا

مزایای معاملات الگوریتمی در بازار سرمایه و جایگاه ایران میان رقبا

در چند سال اخیر استفاده از هوش مصنوعی در بازارهای مالی، رونق چشمگیری پیدا کرده است به طوری که بر اساس اطلاعات موجود بیش از 50 درصد معاملات در بورس ایالات متحده آمریکا با این روش انجام می شود؛ استفاده از معاملات الگوریتمی چنان در دنیای امروز اهمیت یافته که توجهات بسیاری را به خود جلب کرده است.

به گزارش خبرنگار ایمنا؛ پس از اثبات مزایای بازارهای مالی برای اقتصاد کشورها، این بخش به یکی از مهمترین مامن سرمایه‌ها تبدیل شد. به مرور با گسترده شدن بازارهای مالی و فعالیت بیشتر و بیشتر سرمایه‌گذاران به منظور کسب بازدهی بیشتر، روش‌های سرمایه‌گذاری در بازار توسعه یافته و شیوه‌های تازه‌ای برای سرمایه‌گذاری پدید آمد. با گسترش علوم رایانه و توسعه الگوریتم‌ها و کشف مزایای هوش مصنوعی، صفحه‌ای جدید در کتاب معاملات بازارهای مالی گشوده شد.

به دنبال آن متخصصان علوم رایانه و بازارهای مالی گرد هم آمدند و با ساخت الگوریتم‌های معاملاتی که با هدف جایگزین شدن با معامله‌گران انسانی پدید آمد، معاملات در بازار شیوه جدیدی به خود گرفت و به دلیل مزایای مهمی که استفاده از این روش به همراه داشت به سرعت توجه‌ها را به خود جلب کرد.

در تعریف این نوع معاملات باید گفت به طور کلی، هر نوع معامله خودکار فارغ از تعداد دستورهای ارسالی به سامانه معاملاتی، معامله الگوریتمی محسوب می‌شود. در این بخش، الگوریتم‌ها با بررسی و تحلیل داده‌های موجود، مستقیماً به خرید و فروش سهام می‌پردازند. در حال حاضر برخی از الگوریتم‌های موجود در بازار سرمایه قادر به انجام تمامی امور از صفر تا صد است.

پس به طور ساده، هر معامله خودکار می‌تواند در نقطه‌ای از طیف معاملات الگوریتمی قرار گیرد. این طیف را بر اساس عملکرد می‌توان به الگوریتم‌های معاملاتی اجرای معاملات، الگوریتم‌های سیگنال‌دهی، الگوریتم‌های مانیتورینگ یا پایش بازار، الگوریتم‌های position trading یا کم بسامد و الگوریتم‌های HFT یا پر بسامد (High Frequency Trading) تقسیم بندی کرد.

به دلیل اهمیت زمان و توانایی این برنامه‌ها در کسب سود بدون الزام وجود توجه کامل انسانی، این نوع از معاملات به سرعت مورد توجه قرار گرفت. از میان انواع معاملات الگوریتمی که بیان شد، معاملات فرکانس بالا از محبوبیت بیشتری در بورس‌های پیشرفته دنیا مانند بورس نیویورک یا نزدک برخوردار است. اما در ایران از انجام چنین معاملاتی به دلیل ایجاد اختلال در سامانه معاملاتی جلوگیری می‌شد.

اما این مهم به ویژه در سال‌های اخیر در ایران مورد توجه مسئولان مربوطه از جمله سازمان بورس و اوراق بهادار قرار گرفت، به گونه‌ای که برگزاری مسابقات معاملات الگوریتمی در کشور با هدف توسعه اینگونه معاملات در دستور کار قرار گرفته و مدیریت آن به شرکت اطلاع‌رسانی و خدمات بورس واگذار شد. در همین راستا گفتگویی با یاسر فلاح، مدیر روابط عمومی و امور بین‌الملل سازمان بورس و اوراق بهادار و مدیرعامل شرکت اطلاع رسانی و خدمات بورس داشتیم که در ادامه می‌خوانید:

ورود هوش مصنوعی به معاملات چه مزایایی دارد و چرا کشورهای توسعه یافته به گسترش آن در حوزه‌های مالی توجه دارند؟

از ابتدای آغاز فعالیت بورس نحوه معاملات سهام به صورت خرید و فروش فردی بوده است اما گسترش تکنولوژی‌های نوین به ویژه علوم رایانه‌ای و ورود آن به علوم مالی به ویژه در بازار سرمایه باعث شد از چندین سال گذشته شیوه جدیدی از معاملات با عنوان معاملات الگوریتمی در بازارهای مالی رواج پیدا کند. در واقع یک استراتژی معاملاتی مالی توسط متخصصان علوم رایانه‌ای به یک الگوریتم معاملاتی تبدیل می‌شود. پس از تبدیل این استراتژی به الگوریتم، نقش معامله‌گری فرد حذف شده و رایانه به جای شخص به معامله می‌پردازد.

ورود هوش مصنوعی به معاملات مزایای قابل توجهی دارد. به طور کلی استفاده از هوش مصنوعی به جای انسان باعث می‌شود سرعت انجام معاملات افزایش پیدا کند. همچنین باعث می‌شود دقت در انجام معاملات به شدت افزایش پیدا کرده و بالتبع احتمال بروز خطا نیز کاهش یابد.

علاوه بر این با استفاده از این فناوری، تخلفات در بازار نیز به صفر میل می‌کند. از آن‌جا که در معاملات الگوریتمی، سفارشات توسط یک ماشین ثبت می‌شود امکان انجام تخلفات نیز تقریباً به سمت صفر حرکت می‌کند، به همین دلایل بورس‌های مطرح جهان نیز به این سمت حرکت کرده‌اند.

یکی از پدیده‌های بد بازار سهام که هم‌اکنون نیز با آن مواجه هستیم، صف نشینی است. در واقع صف نشینی بدین معنی است که افرادی با انتشار سیگنال، معاملات با فرکانس بالا دیگران را ترغیب به خرید یا فروش یک سهم می‌کنند؛ مسئله‌ای که وجود معاملات الگوریتمی از بروز آن جلوگیری می‌کند. همچنین زمانی که یک الگوریتم مناسب نوشته می‌شود، تهیه کنندگان علاوه بر استفاده و کسب سود در بازار سرمایه می‌توانند با فروش آن به دیگران، تجارت جدیدی انجام دهند.

در جهان امروز و در بازارهای معتبر دنیا نظیر بورس‌های ایالات متحده آمریکا، معاملات الگوریتمی رونق خاصی پیدا کرده و بخشی از معاملات با این روش انجام می‌شود. در ایران نیز تقریباً از دو سال گذشته، سازمان بورس و اوراق بهادار انجام معاملات الگوریتمی را بلا مانع دانست. به دنبال اعلام این موضوع، معاملات الگوریتمی در بازار سهام ایران نیز آغاز شد اما هنوز تعداد چنین معاملاتی کم است.

به همین دلیل شرکت اطلاع رسانی و خدمات بورس به عنوان بازوی آموزشی و فرهنگ سازی بازار سرمایه ایران به این حوزه وارد شده و به منظور بیان اهمیت معاملات الگوریتمی در کشور، از سال گذشته مسابقات معاملات الگوریتمی را به صورت سالانه در کشور برگزار می‌کند. این رقابت هیچ محدودیتی نداشته و همه می‌توانند در آن شرکت کنند؛ امیدواریم که با این کار بتوانیم بازار سهام را علمی‌تر، تحلیلی‌تر و به روزتر به پیش بریم. استفاده از معاملات الگوریتمی فرصتی است که باید به دلیل مزایای آن به درستی مورد استفاده قرار گیرد.

چرا انجام معاملات الگوریتمی با فرکانس بالا یا اصطلاحاً معاملات HFT در بورس ایران ممنوع است؟

باید توجه داشت که متأسفانه معاملات HFT هنوز در بورس ایران قابلیت اجرا ندارد؛ انجام این نوع داد و ستد در بازار سرمایه می‌تواند در سیستم معاملاتی بورس کشور اختلال ایجاد کند، از این سو، سازمان بورس مانع از فعالیت اینگونه معاملات می‌شود.

در حال حاضر ضریب نفوذ معاملات الگوریتمی در بورس ایران چقدر بوده و این مقدار در بورس‌های توسعه یافته و پیشرفته جهانی مانند بورس نیویورک چقدر است؟

بر اساس آخرین آمار در دسترس، ضریب نفوذ معاملات الگوریتمی در بورس ایالات متحده بیش از ۵۰ درصد بوده و این بدین معنی است که بیش از ۵۰ درصد معاملات در این بورس‌ها، از طریق الگوریتم‌ها انجام می‌شود. حال از آنجا که این عدد در دیگر کشورها مانند کشورهای توسعه یافته اروپایی و آسیایی نیز بالاست می‌توان نتیجه گرفت که تمایل معامله گران به استفاده از معاملات الگوریتمی قابل توجه است زیرا زمان و سرعت عمل دو عامل مهم در این کشورها به شمار می‌رود.

همچنین بر اساس آخرین اطلاعات، در منطقه ما نیز حدود ۲۰ درصد از معاملات بورس استانبول که قرابت‌هایی با بورس ایران دارد، به روش الگوریتمی انجام می‌شود. با این وجود این عدد در بورس ایران بالا نبوده و به علت تازه بودن نیز آمار دقیقی از آن در دسترس نیست، اگرچه به نظر می‌رسد حوالی هشت درصد باشد. به منظور توسعه این عدد علاوه بر برگزاری مسابقه معاملات الگوریتمی، کارگزاران نیز باید با این مسئله آشنا شده و آن را یاد بگیرند؛ ایده استفاده از ماشین در معاملات به هیچ عنوان خام نیست و کاملاً بر اساس مطالعات است.

بر اساس اطلاعات در دسترس، در منطقه خاورمیانه و غرب آسیا کشورهای بسیاری در حال استفاده از این فناوری هستند. اگر این مسئله صحیح است آیا مسابقات معامله الگوریتمی نیز در این کشورها برگزار می‌شود؟

اگرچه معاملات الگوریتمی در بسیاری از کشورهای منطقه از جمله ترکیه، عربستان، کره، ژاپن، هندوستان و امارات وجود معاملات با فرکانس بالا معاملات با فرکانس بالا دارد اما بر اساس آخرین اطلاعات موجود، ایران پس از هند، دومین برگزار کننده مسابقات الگوریتمی در آسیا و اولین برگزار کننده در غرب آسیا و خاورمیانه به شمار می‌رود.

نکته قابل توجه درباره کشور هند این است که اگرچه ضریب نفوذ بازار سرمایه در آن بسیار پایین و حدود دو درصد است اما همین مقدار با احتساب جمعیت یک میلیاردی آن، دربرگیرنده حدود ۲۵ میلیون نفری است و معاملات الگوریتمی در آن با قوت در حال انجام است.

در ایران اما این عدد با توجه به جمعیت ۸۱ میلیون نفری آن، حدود ۱۳ میلیون نفر است. از این میان، حدود ۵۰۰ هزار نفر معامله‌گر روزانه، دو میلیون نفر معامله گران هفتگی و ماهانه، پنج میلیون نفر معامله گران سالانه و سه میلیون نفر نیز شامل افرادی می‌شود که در صندوق‌های سرمایه‌گذاری، اوراق تسهیلات مسکن و موارد مشابه سرمایه گذاری می‌کنند. مجموع این افراد نشان می‌دهد ضریب نفوذ بازار سرمایه در ایران حدود ۱۵ درصد است.

معاملات الگوریتمی چیست؟

معاملات الگوریتمی

معاملات الگوریتمی (Algorithmic Trading) معاملات خودکار، تجارت به روش جعبه سیاه یا معاملات الگویی نیز نامیده می‌شود. در این نوع از معاملات، از یک برنامه رایانه‌ای استفاده می‌شود که مجموعه‌ای از دستورالعمل‌های تعریف شده (الگوریتم) را برای انجام معاملات به کار می‌گیرد.

در تعریف‌های مربوط به تجارت و علوم اقتصادی آورده شده است که این نوع از معامله می‌تواند با سرعت و فرکانس سود کسب کند که برای انسان انجام آن کاملاً غیرممکن است.

از معاملات الگوریتمی چه می‌دانید؟

معاملات الگوریتمی علاوه بر فرصت‌های پرسودی که برای فرد تجارت‌کننده دارد، با درک و تحلیل تأثیرات مربوط به عواطف انسانی بر فعالیت‌های تجاری معاملات را به نحو سیستماتیک‌تری انجام می‌دهد. به نظر می‌رسد تجارت الگوریتمی عامل انسانی را حذف می‌کند و در عوض از استراتژی‌های مبتنی بر آمار از پیش تعیین شده پیروی می‌کند که می‌توانند هفت روز هفته ساعت و توسط کامپیوترها با حداقل نظارت اجرا شوند.

رایانه‌ها می‌توانند مزایای متعددی نسبت به معامله‌گران انسانی ارائه دهند. برای اولین بار، آنها می‌توانند تمام روز، بدون خواب، فعال بمانند.

آن‌ها همچنین می‌توانند داده‌ها را به طور دقیق تجزیه و تحلیل کنند و به تغییرات میلی ثانیه پاسخ دهند. علاوه بر این، آنها هرگز احساسات را در تصمیم‌گیری‌های خود فاکتور نمی‌گیرند.

به همین دلیل، مدت‌هاست که بسیاری از سرمایه‌گذاران فهمیده‌اند که ماشین‌آلات می‌توانند معامله‌گران عالی داشته باشند، با توجه به اینکه آنها از استراتژی‌های صحیح استفاده می‌کنند.

چرا معاملات الگوریتمی؟

بیشتر استراتژی‌های معاملات الگوریتمی حول شناسایی فرصت‌ها در بازار بر اساس آمار است. تجارت لحظه‌ای به دنبال پیروی از روندهای فعلی است و استراتژی‌های یادگیری ماشینی سعی می‌کنند فلسفه‌های پیچیده‌تری را به صورت خودکار در بیاورند یا چندین مورد را به طور همزمان ادغام کنند.

هیچ یک از این موارد تضمین واقعی برای سودآوری نیست و معامله‌گران باید بفهمند که الگوریتم صحیح یا ربات را کی و کجا پیاده‌سازی کنند. حوزه تجارت الگوریتمی نیز به همین ترتیب تکامل یافته است. در حالی که این کار با تجارت رایانه در بازارهای سنتی آغاز شد، افزایش دارایی‌های دیجیتال و مبادلات جاری در هفت روز هفته این رویه را به سطح جدیدی رسانده است.

تقریباً به نظر می‌رسد که تجارت اتوماتیک و ارزهای رمز پایه برای یکدیگر ساخته شده است. درست است که کاربران هنوز هم باید استراتژی‌های خاص خود را انجام دهند، اما اگر به درستی اعمال شود، این تکنیک‌ها می‌توانند به بازرگانان کمک کنند دست خود را از چرخ بردارند و اجازه دهند ریاضیات کار خود را انجام دهد.

بررسی دقیق تر کاربرد معاملات الگوریتمی

فرض کنید که یک فرد برای انجام معاملات خود از این معیارهای تجاری ساده پیروی می‌کند:

  1. وقتی میانگین متحرک ۵۰ روزه آن از میانگین متحرک ۲۰۰ روزه بالاتر رفت، ۵۰ سهم از سهام را می‌خرد. (میانگین متحرک میانگین دادهای نقاط گذشته است که نوسانات قیمتی را روز به روز مرتفع‌تر می‌کند و در نتیجه‌ی آن روندها مشخص می‌شوند.)
  2. فروش این سهام زمانی که میانگین متحرک ۵۰ روزه آن از میانگین متحرک ۲۰۰ روزه پایین‌تر باشد.

با استفاده از این دو دستورالعمل ساده، یک برنامه کامپیوتری به طور خودکار ارزش سهام (و شاخص‌های میانگین متحرک) را کنترل کرده و در صورت تناسب شرایط تعریف شده، سفارشات خرید و فروش را ثبت می‌کند.

فرد معامله‌گر دیگر نیازی به نظارت بر قیمت‌ها و نمودارهای متغیر و به روز یا سفارشات به صورت دستی ندارد. سیستم معاملات الگوریتمی با شناسایی فرصت صحیح معامله به صورت خودکار این کار را انجام می‌دهد.

مزایای انجام معاملات به روش الگوریتمی

مزایا معاملات الگوریتمی:

  1. معاملات با بهترین قیمت ممکن انجام می‌شود.
  2. ثبت سفارش در این نوع معاملات دقیق و سریع است. (اجرایی شدن آن در سطح دلخواه بسیار محتمل است.)
  3. بسیار اهمیت دارد که معاملات قبل از تغییرات ارزشی قابل توجه به درستی و هر چه سریع‌تر انجام شوند که به روش الگوریتمی امری امکان پذیر است.
  4. کاهش هزینه‌های معامله
  5. بررسی خودکار همزمان در شرایط مختلف بازار
  6. کاهش انواع خطاهای دستی هنگام انجام معاملات.
  7. معاملات الگوریتمی را می‌توان با استفاده از داده‌های موجود در زمان واقعی و درست مورد آزمایش مجدد قرار داد تا ببینیم آیا می‌توان این دست از معاملات را یک استراتژی مناسب و هوشمندانه در انجام معاملات تجاری بر شمرد و یا خیر.
  8. از احتمال وقوع خطاهای متعدد توسط معامله‌کنندگان انسانی (و نه ماشینی) در اثر عوامل روحی و روانی می‌کاهد.

بیشتر معاملات الگوریتمی که امروزه انجام می‌گیرد، معاملات با فرکانس بالا (HFT) هستند که تلاش می‌کند تعداد زیادی سفارش را با سرعت سریع‌تر در چندین بازار و با پارامترهای تصمیم‌گیری چندگانه بر اساس دستورالعمل‌های از پیش برنامه‌ریزی شده، ثبت کند.

معاملات الگوریتمی در اشکال مختلف معامله، خرید و فروش و فعالیت‌های متنوع سرمایه‌گذاری مورد استفاده قرار می‌گیرد از جمله:

  • سرمایه‌گذاران میان مدت و یا بلند مدت یا موسسات بازرگانی طرف خرید، صندوق‌های بازنشستگی، صندوق‌های سرمایه‌گذاری، شرکت‌های بیمه و برخی دیگر از معاملات الگوریتمی برای خرید سهام در مقادیر زیاد استفاده می‌کنند، زمانی که نمی‌خواهند با سرمایه‌گذاری‌های گسسته و پر حجم بر ارزش سهام تأثیر بگذارند.
  • سرمایه‌گذاران کوتاه مدت و شرکای طرف فروش، سازندگان بازار (مانند کارگزارها)، دلالان و داوران از مزایای معاملات خودکار بهره‌مند می‌شوند. علاوه بر این، معاملات الگوریتمی به ایجاد نقدینگی کافی برای فروشندگان در بازار کمک می‌کند.

معاملات الگوریتمی نسبت به روش‌های مبتنی بر شهود یا غریزه معامله‌گر، رویکرد سیستماتیک‌تری در معاملات فعال فراهم می‌کند.

استراتژی های معاملات الگوریتمی

هر استراتژی برای معامله خودکار (الگوریتمی) نیاز به فرصتی مشخص دارد که از نظر بهبود درآمد یا کاهش هزینه سودآور باشد. در ادامه چند نمونه از استراتژی های معاملاتی رایج را مشاهده می‌کنید:

استراتژی ‌های دنباله روی ترندها

رایج‌ترین استراتژی‌های معاملات الگوریتمی در مورد میانگین متحرک، شکست کانال، تغییرات سطح قیمت و دیگر شاخص‌های فنی مرتبط مورد استفاده قرار می‌گیرند. اینها ساده‌ترین و آسان‌ترین استراتژی‌هایی هستند که می‌توانند از طریق معاملات الگوریتمی اجرا شوند، زیرا این استراتژی‌ها پیش بینی قیمت انجام نمی‌دهند.

معاملات براساس وقوع روندهای مطلوب آغاز می‌شوند چرا که اجرای آن‌ها از طریق الگوریتم‌ها بدون وارد شدن به پیچیدگی تحلیل‌ و پیش‌بینی، آسان و ساده است. افرادی که دنباله‌ روی ترندها هستند استفاده از میانگین متحرک ۵۰ و ۲۰۰ روزه را به عنوان یک استراتژی رایج در دستور کار خود قرار می‌دهند.

فرصت‌ های آربیتراژ

آربیتراژ (Arbitrage) به معنای کسب سودی بدون ریسک از اختلاف قیمت دو بازار مختلف است، یعنی شما سهامی را از یک لیست در یک بازار خریداری می‌کنید و همان سهام را هم‌زمان در بازاری دیگر با قیمت بالاتر به فروش می‌رسانید و از این اختلاف قیمت سود می‌کنید؛ ما این سود بدون ریسک را آربیتراژ می‌نامیم. همان عملکرد را می‌توان برای سهام در مقابل ابزارهای آتی داشت؛ زیرا اختلاف قیمت در هر بازه‌ای از زمان در بازارها وجود دارد.

اجرای یک الگوریتم مشخص به منظور شناسایی این تفاوت قیمت‌ها و ثبت کارآمد سفارشات، فرصت‌های سودآوری را بدست می‌آورد.

توازن مجدد صندوق شاخص

صندوق‌های شاخص دوره‌های متعادل‌سازی مجددی را تعریف کرده‌اند تا منابع خود را با شاخص‌های معیار مربوط با آن برابر کنند. این کار فرصت‌های سودآوری را برای معامله‌گران روش الگوریتمی ایجاد می‌کند که معاملات مورد انتظار را که بسته به تعداد سهام در صندوق شاخص و قبل از به تعادل رساندن مجدد آن، ۲۰ تا ۸۰ امتیاز پایه دریافت می‌کنند، سرمایه‌گذاری می‌کنند.

این گونه معاملات از طریق سیستم‌های معاملات الگوریتمی برای اجرای به موقع و شناسایی بهترین قیمت‌ها آغاز می‌شود.

ربات معاملاتی چیست؟

در ابتدایی‌ترین سطح، یک ربات تجارت الگوریتمی یک کد رایانه‌ای است که توانایی تولید و اجرای سیگنال‌های خرید و فروش در بازارهای مالی را دارد.

اجزای اصلی چنین رباتی شامل قوانین ورود به سیستم است که هنگام خرید یا فروش سیگنال می‌دهد. قوانین خروج نشان می‌دهد که چه زمانی موقعیت فعلی و قوانین اندازه‌گیری موقعیت که مقدار خرید یا فروش را تعریف می‌کند را ترک کنید.

برای داشتن سودآوری، ربات باید کارآیی بازار را به طور منظم و مداوم شناسایی کند.

توسعه استراتژی های الگوریتمی

اولین گام در توسعه استراتژی‌های الگوریتمی، تأمل در برخی از ویژگی‌های اصلی است که هر استراتژی تجارت الگوریتمی باید داشته باشد. این استراتژی باید از نظر بازار هوشمندانه باشد.

هم‌چنین مدل ریاضی مورد استفاده در تدوین استراتژی باید بر اساس روش‌های آماری صحیح باشد.

در مرحله بعدی، معاملات با فرکانس بالا تعیین کنید که ربات شما قصد دارد چه اطلاعاتی را به دست آورد. برای داشتن یک استراتژی خودکار (الگوریتمی) باید رباتی داشته باشید که قادر به ضبط ناکارآمدی‌های مداوم بازار باشد.

استراتژی‌های معاملات الگوریتمی از مجموعه‌ای از دستورالعمل‌های سخت برای بهره‌گیری از رفتار بازار پیروی می‌کنند و وقوع یک‌باره ناکارآمدی بازار برای ایجاد یک استراتژی کافی نیست.

به‌علاوه، اگر علت ناکارآمدی بازار غیرقابل شناسایی باشد، هیچ راهی برای دانستن اینکه آیا موفقیت یا شکست استراتژی به دلیل شانس بوده است یا خیر وجود نخواهد داشت.

با در نظر گرفتن موارد فوق، انواع مختلفی از استراتژی‌ها برای آگاهی از طراحی ربات تجارت الگوریتمی شما وجود دارد.

استراتژی‌هایی که از موارد زیر (یا ترکیبی از آن‌ها) بهره می‌برد:

  1. اخبار اقتصادی کلان (به عنوان مثال، حقوق و دستمزد غیر مزرعه‌ای یا تغییرات نرخ بهره)
  2. تجزیه و تحلیل اساسی (به عنوان مثال، با استفاده از داده‌های درآمد یا یادداشت‌های انتشار درآمد)
  3. تجزیه و تحلیل آماری (به عنوان مثال، همبستگی یا ادغام مشترک)
  4. تجزیه و تحلیل فنی (به عنوان مثال، میانگین متحرک)
  5. ریزساختار بازار (به عنوان مثال آربیتراژ یا زیرساخت‌های تجاری)

فراتر از الگوریتم های معاملاتی معمول

چند نوع خاص از الگوریتم‌ها وجود دارد که اتفاقاتی را که در طرف معاملات با فرکانس بالا معاملات با فرکانس بالا دیگر می‌افتند شناسایی می‌کنند. یک سازنده در بازار فروش برای مثال از این نوع از الگوریتم‌ها استفاده می‌کند؛ چرا که دارای هوشمندی لازم برای شناسایی وجود هر گونه الگوریتم در سمت ثبت یک سفارش بزرگ است.

چنین ردیابی از طریق الگوریتم‌ها به معامله‌گر در یک بازار کمک می‌کند تا فرصت‌های بزرگی که در انتخاب سفارشات پیش می‌آیند را شناسایی کند.

این کار گاهی اوقات به عنوان عملکردی پیشرفته شناخته می‌شود.

الزامات فنی برای معاملات الگوریتمی

به کارگیری الگوریتم با استفاده از یک برنامه رایانه‌ای آخرین مؤلفه معاملات الگوریتمی است که با آزمایش مجدد همراه است (آزمایش عملکرد الگوریتم در دوره‌های گذشته‌ی بازار سهام برای کسب اطلاع از نحوه‌ی سودآوری آن).

چالش اصلی این است که استراتژی شناسایی شده را به یک فرآیند کامپیوتری یکپارچه تبدیل کنید که برای ثبت سفارش به حساب تجاری دسترسی دارد. موارد زیر الزامات تجارت الگوریتمی است:

  • دانش برنامه‌نویسی کامپیوتری برای برنامه‌ریزی استراتژی‌های معاملاتی مورد نیاز، در صورتی که دانش برنامه‌نویسی ندارید اما مایل به انجام معاملات الگوریتمی هستید، پیشنهاد می‌شود برنامه‌نویسانی را برای این کار استخدام کنید و یا از نرم‌افزارهای پیش‌ساخته معاملاتی استفاده کنید.
  • اتصال به شبکه و دسترسی به سیستم عامل‌های تجاری برای ثبت سفارش.
  • دسترسی به فیدهای داده‌های بازار که توسط الگوریتم در موقعیت‌های ثبت سفارش کنترل می‌شوند.
  • توانایی و همچنین داشتن زیرساخت‌های خاص در مواقع نیاز به کنترل سیستم قبل از اینکه در بازارهای واقعی فعال شود.
  • داده‌های قبلی موجود برای آزمایش مجدد بسته به پیچیدگی قوانین پیاده‌سازی شده در الگوریتم.

برنامه رایانه‌ای مورد استفاده شما باید موارد زیر را انجام دهد:

  1. فید قیمت آینده سهام RDS را از هر دو بورس بخواند.
  2. با استفاده از نرخ ارز موجود، یک ارز را به ارز دیگر تبدیل کنید.
  3. اگر اختلاف قیمت قابل توجهی وجود داشته باشد (به علت حذف هزینه‌های کارگزاری) که منجر به یک فرصت سودآور می‌شود، برنامه باید بتواند سفارش خرید را در بورس با قیمت پایین‌تر قرار دهد و سفارش را در بورس با قیمت بالاتر بفروشد.

اگر سفارشات به دلخواه انجام شوند سود آربیتراژ به دنبال خواهد داشت.

شاید به نظر ساده و آسان بیاید، اما با این حال نگهداری و اجرای معاملات الگوریتمی به همین سادگی نیست. به یاد داشته باشید اگر یک سرمایه‌گذار بتواند معامله‌ای انجام دهد، سایر فعالان در عرصه‌ی تجارت در بازار نیز می‌توانند این کار را انجام دهند.

در نتیجه، قیمت‌ها در صدم ثانیه و حتی میکروثانیه نوسان می‌کنند. در مثال بالا، چه اتفاقی می‌افتد اگر یک معامله خرید انجام شود، اما معامله فروش متفاوت باشد، یعنی قیمت فروش در زمان ورود سفارش به بازار تغییر کند؟ پاسخ این است که معامله‌گر با موقعیتی آزاد روبرو خواهد شد و استراتژی آربیتراژ را بی‌ارزش می‌کند.

خطرات و چالش‌های اضافی مانند ریسک خرابی سیستم، خطاهای اتصال به شبکه، فاصله زمانی بین سفارشات و اجرا و از همه مهم‌تر الگوریتم‌های ناقص وجود دارد.

هر چه الگوریتم پیچیده‌تر باشد، آزمایش مجدد سختگیرانه‌تری قبل از عملی شدن لازم است.

استراتژی های معاملات الگوریتمی چیست؟ (ترید با ربات ها)

معاملات الگوریتمی و ترید با ربات

به نظر می رسد تجارت و معاملات الگوریتمی عامل انسانی را حذف می کند و در عوض از استراتژی های مبتنی بر آمار از پیش تعیین شده پیروی می کند که می توانند 24/7 ساعت و توسط کامپیوترها با کمترین نظارت اجرا شوند.

رایانه ها و ربات ها می توانند مزایای متعددی نسبت به معامله گران انسانی ارائه دهند. برای اولین بار ، آنها می توانند کل روز ، هر روز بدون وقفه فعال بمانند. آنها همچنین می توانند داده ها را به طور دقیق تجزیه و تحلیل کنند و به تغییرات میلی ثانیه ای نیز پاسخ دهند. علاوه بر این ، ربات ها هرگز احساسات را در تصمیم گیری های خود فاکتور نمی معاملات با فرکانس بالا گیرند. به همین دلیل ، مدت هاست که بسیاری از سرمایه گذاران فهمیده اند که ربات ها می توانند معامله های عالی داشته باشند و از استراتژی های صحیح استفاده کنند.

حوزه تجارت با معاملات الگوریتمی به این ترتیب تکامل یافته است. در حالی که این کار با معاملات رایانه در بازارهای سنتی آغاز شد ، افزایش دارایی های دیجیتال و مبادلات 24/7 این روش را به سطح جدیدی رسانده است. تقریباً به نظر می رسد که معاملات اتوماتیک و ارزهای رمزپایه برای یکدیگر ساخته شده است. درست است که کاربران هنوز هم باید استراتژی های خاص خود را انجام دهند ، اما اگر به درستی اعمال شود ، این تکنیک ها می توانند به معامله گران کمک کنند تا معاملات خود را به ربات های هوشمند بسپارند.

استراتژی های اصلی کدامند؟

فلسفه اصلی بیشتر معاملات الگوریتمی حول محور استفاده از نرم افزار برای شناسایی فرصت های سودآور و پذیرش سریعتر از آن است که یک انسان بتواند از آن استفاده کند. متداول ترین روش ها معاملات حرکت ، معکوس کردن متوسط ​​، آربیتراژ و انواع استراتژی های یادگیری رباتی است.

بیشتر استراتژی های معاملات الگوریتمی حول شناسایی فرصت ها در بازار بر اساس آمار است. معاملات اسپات به دنبال پیروی از روندهای فعلی است و هم چنین میانگین برگشت به دنبال واگرایی آماری در بازار است. آربیتراژ برای تفاوت در قیمت های اسپات در صرافی های مختلف جستجو می کند. و استراتژی های یادگیری هوشمند سعی می کنند فلسفه های پیچیده تری را به صورت خودکار در بیاورند یا چندین مورد را به طور هم زمان ادغام کنند. هیچ یک از این موارد تضمین ساده ای برای سود نیست و معامله گران باید بفهمند که الگوریتم صحیح یا “ربات” را کی و کجا پیاده سازی کنند.

به طور کلی ، ربات ها در برابر داده های تاریخی بازار آزمایش می شوند ، که به آنها آزمایش مجدد می گویند. این به کاربران اجازه می دهد تا استراتژی خود را در بازار واقعی که قصد دارند آن را آزاد کنند ، اما با حرکات ثابت شده از گذشته امتحان کنند. برخی از خطرات در انجام این کار می تواند شامل “نصب بیش از حد” باشد – این زمانی است که یک ربات در اطراف داده های تاریخی ابداع می شود که واقعاً شرایط فعلی را منعکس نمی کند و منجر به استراتژی ای می شود که در واقع تولید نمی شود.

بهترین ساعت کار فارکس چه زمانی است؟

آشنایی با ارز دیجیتال Polkadot

یک مثال بسیار ساده اگر شما یک ربات را در برابر داده های یک قیمت ماشین و تست کنید اما شروع به کار آن در بازار ارزهای دیجیتال باشد. بدیهی است که بازدهی را که انتظار داشتید با معاملات الگوریتمی مشاهده نخواهید کرد.

معاملات تکانه ای چیست؟

معاملات شتاب بر اساس این منطق استوار است که اگر روند غالب در بازار در حال حاضر قابل مشاهده است ، آن روند به طور معقولانه حداقل تا زمانی که سیگنال های پایان خود شروع شود ادامه خواهد داشت.

ایده در مورد معاملات الگوریتمی لرزشی این است که اگر دارایی خاصی مثلاً برای چندین ماه در یک جهت حرکت کرده باشد ، با اطمینان می توانیم این روند را ادامه دهیم ، حداقل تا زمانی که داده ها خلاف آن را نشان دهند. بنابراین ، برنامه خرید در هر افت قیمت و قفل کردن سود در هر پامپ یا برعکس در صورت کوتاه شدن است. البته ، معامله گران باید از این موضوع آگاه باشند که بازار نشانه هایی از روند معکوس را نشان می دهد ، در غیر این صورت همین استراتژی می تواند بسیار سریع شروع به ضرر کردن شما کند.

همچنین باید توجه داشت که معامله گران نباید استراتژی هایی را تنظیم كنند كه سعی در خرید و فروش در پایین ترین سطح یا افت های واقعی باشد یا به اصطلاح “گرفتن چاقو” نامیده می شود ، بلكه باید سود خود را قفل كنند و در سطوح قابل اطمینان خرید كنند. معاملات الگوریتمی برای این ایده آل است ، زیرا کاربران می توانند به سادگی درصدی را که با آن احساس راحتی میکنند تعیین کنند. اگر یک بازار به یک طرف حرکت کند یا آنقدر بی ثبات باشد که روند مشخصی ایجاد نشود ، این روش به خودی خود می تواند بی تأثیر باشد.

یک شاخص عالی برای تماشای روندها ، میانگین متحرک است. دقیقاً همانطور که به نظر می رسد ، میانگین متحرک خطی است بر روی نمودار قیمت که میانگین قیمت یک دارایی را بیش از x مقدار روز (یا ساعت ، هفته ، ماه و …) نشان می دهد. اغلب ، مقادیری مانند 50 ، 100 یا 200 استفاده می شود ، اما استراتژی های مختلف برای پیش بینی معاملات خود ، دوره های زمانی مختلف را بررسی می کنند.

به طور کلی ، یک روند هنگامی که کاملاً بالاتر یا کمتر از یک میانگین متحرک باقی بماند ، قوی تلقی می شود – و هنگام نزدیک شدن یا عبور از خط MA ، ضعیف است. بعلاوه ، به کارشناسی ارشد مبتنی بر دوره های طولانی تر وزن بسیار بیشتری نسبت به دوره ای که فقط مثلاً 100 ساعت گذشته یا یک بازه زمانی مشابه را تماشا می کند ، داده می شود.

برگشت متوسط در معاملات الگوریتمی ​​چیست؟

بازگشت متوسط ​​به این واقعیت اشاره دارد که از نظر آماری ، قیمت یک دارایی باید به سمت ​​قیمت متوسط ​​برگردد. انحراف شدید از این قیمت به معنی خرید بیش از حد یا فروش بیش از حد و احتمال تغییر قیمت است.

حتی برای ارزی مانند بیت کوین ( BTC ) ، که واقعاً فقط در بازار بزرگ بوده است ، می تواند اوج یا پایین آمدن قابل توجهی داشته باشد که از مسیری که قیمت در طول تاریخ دنبال می کرده است دور شود. در بیشتر مواقع ، دیری نمی گذرد که بازارها به سمت این میانگین قیمت برگردند. با مشاهده میانگین های بلند مدت ، معاملات الگوریتمی می توانند با اطمینان معامله کنند که انحرافات گسترده از این قیمت ها طولانی نیست و سفارشات معاملاتی را بر این اساس تنظیم می کنند.

به عنوان مثال ، یک شکل خاص از این حالت برگشت انحراف استاندارد نامیده می شود ، و توسط شاخصی به نام باندهای بولینگر اندازه گیری می شود. اساساً ، این باندها به عنوان محدودیت های بالا و پایین بر روی انحراف از میانگین متحرک مرکزی عمل می کنند. وقتی اقدام قیمت به سمت یکی از این افراط ها پیش می رود ، احتمال اینکه یک چرخش به سمت مرکز به زودی انجام شود ، زیاد است.

البته ، یکی از بزرگترین خطرات در اینجا این است که معاملات الگوریتمی نمی تواند تغییرات اساسی را حساب کند. اگر بازاری به دلیل نقص دارایی اساسی در حال خراب شدن باشد ، ممکن است قیمت هرگز بهبود نیابد – یا حداقل به سرعت انجام نشود. این باز هم جایی است که معامله گران باید شرایط خاصی را که الگوریتم هایشان نمی توانند ببینند کنترل و حساب کنند.

شکل دیگری از بازگشت متوسط ​​می تواند در چندین دارایی رخ دهد و استفاده از این روش معامله جفت نامیده می شود. دو دارایی به طور سنتی با هم ارتباط دارند. یعنی وقتی یکی بالا یا پایین می رود ، از نظر آماری دیگری نیز همین کار را می کند. می توان با معاملات الگوریتمی ایجاد کرد تا یکی از این دارایی ها را تحت نظر داشته باشد تا حرکتی انجام شود ، سپس معامله ای را بر اساس احتمال اینکه کالای دیگر به زودی دنبال خواهد کرد ، انجام دهد. چارچوب های زمانی برای این اختلافات گاهی اوقات می تواند کوتاه باشد و ماهیت خودکار این استراتژی را بسیار ارزشمندتر کند.

آربیتراژ چیست؟

داوری استراتژی ای است که از اختلاف قیمت موجود در دارایی های مختلف در بازارهای مختلف بهره می برد.

گاهی اوقات همان محصول ، مانند یک کالا یا ارز ، می تواند به طور موقت در صرافی های مختلف قیمت های متفاوتی داشته باشد. این می تواند فرصتی عالی برای سودآوری برای آن دسته از افراد سریع باشد که بتوانند قبل از تعادل بین این بازارها معامله کنند. برای این منظور ، معاملات الگوریتمی می تواند برای تماشای دارایی های مختلف در بازارهای مختلف و باز کردن معاملات به محض یافتن اختلاف ایجاد شود.

این تکنیک بیش از حد پیچیده نیست ، اما معامله گرانی که می توانند سریعتر پاسخ دهند ، نسبت به آنهایی که سرعت کمتری دارند ، تفاوت دارند. این یک استراتژی است که معاملات الگوریتمی با فرکانس بالا قطعاً از یک مزیت قابل توجه برخوردار است ، زیرا دقیقاً سوداگران با استفاده از این شرایط بازار باعث از بین رفتن شکاف قیمت ها می شوند.

استراتژی های یادگیری ماشینی یا رباتی چیست؟

یادگیری ماشین و هوش مصنوعی میخواهد تجارت و معاملات الگوریتمی را به سطوح جدیدی برساند. نه تنها می توان استراتژیهای پیشرفته تری را در زمان واقعی به کار گرفت و از آنها اقتباس کرد بلکه تکنیک های جدیدی مانند پردازش زبان طبیعی مقاله های خبری می تواند راه های بیشتری را برای دستیابی به بینش ویژه در مورد جنبش های بازار فراهم کند.

الگوریتم ها از قبل می توانند تصمیمات پیچیده ای بگیرند و آنها را طبق استراتژی ها و داده های از پیش تعیین شده اتخاذ کنند ، اما با یادگیری ماشین یا ربات، این استراتژی ها می توانند خود را بر اساس آنچه واقعاً کار می کند به روز کنند. به جای منطق “اگر / یا پس از” ، یک الگوریتم ML می تواند چندین استراتژی را ارزیابی کند و معاملات الگوریتمی بعدی را براساس بالاترین بازده اصلاح کند. در حالی که آنها هنوز کار خود را برای راه اندازی انجام می دهند ، این بدان معناست که معامله گران می توانند به ربات خود ایمان داشته باشند حتی وقتی شرایط بازار فراتر از پارامترهای اولیه تکامل می یابد.

یک نوع محبوب استراتژی ML ، استراتژی ساده نیز نام دارد. در این تکنیک ، الگوریتم های یادگیری براساس آمار و احتمالات قبلی معاملات انجام می دهند.

به عنوان مثال ، داده های بازار تاریخی نشان می دهد که بیت کوین پس از سه روز متوالی قرمز ، 70٪ افزایش می یابد. یک الگوریتم ساده می بیند که سه روز گذشته همه رو به کاهش بوده و به صورت خودکار بر اساس احتمال افزایش امروز سفارش می دهد. این سیستم ها بسیار قابل تنظیم هستند و تنظیم پارامترهای مربوط به مواردی مانند نسبت ریسک و پاداش به عهده هر معامله گر خواهد بود ، اما اگر از تعادل راضی باشید ، می توانید با حداقل تداخل آن را اجرا کنید.

یکی دیگر از مزایای ML این است که ربات ها در معاملات الگوریتمی قادر به خواندن و تفسیر گزارش های خبری هستند. با اسکن کردن کلمات کلیدی و خط کشی استراتژی های مناسب ، این نوع ربات ها می توانند در عرض چند ثانیه با انتشار اخبار مثبت یا منفی معامله کنند. بدیهی است که این موارد دقیقاً به اندازه منطقی که در آنها وجود دارد دقیق خواهند بود – و بنابراین اجرای آنها مشکل است – اما در صورت راه اندازی صحیح ، نسبت به سایر معامله گران برتری دارند.

توجه داشته باشید که این لبه برش شاخه جدیدی در معاملات الگوریتمی خودکار است. بنابراین ، ربات هایی که برای کار با این روش طراحی شده اند ممکن است دشوارتر باشند ، دسترسی به آنها هزینه بیشتری دارد یا به راحتی از برخی تکنیک های آزمایش شده با زمان کمتر قابل پیش بینی هستند.

تعقیب سفارش با معاملات الگوریتمی چیست؟

تعقیب سفارش ، نوعی تماشای سفارشات معین ، بسیار زیاد و سپس تلاش برای حرکت سریع بر اساس این فرض است که این امر منجر به حرکت بیشتر قیمت خواهد شد… معاملات الگوریتمی:

معمولاً ، پیش بینی سفارش بزرگ از بازیکن اصلی ، به نوعی به اطلاعات داخلی احتیاج دارد و تجارت با این دانش معمولاً غیرقانونی است. با این حال ، برخی از معامله گران با فرکانس بالا راه های قانونی برای تراشیدن داده ها از مجامع تجاری بدون نسخه “Dark Pools” پیدا کرده اند. این نوع تالارهای معاملات الگوریتمی مجبور نیستند اطلاعات سفارشات خود را معاملات با فرکانس بالا مانند یک صرافی در زمان واقعی ارسال کنند و بنابراین حرکت آنها تأثیر تاخیری در بازار دارد. با جمع آوری و پیاده سازی این داده ها سریعتر از معامله گران متوسط ​​، کاربران این روش می توانند برتری جدی نسبت به افرادی که این کار را ندارند ، داشته باشند.

به عنوان مثال ، می بینید که یک دستور فروش گسترده در یک استخر اجرا می شود. این به شما می گوید به زودی وقتی این داده ها در بقیه بازار ارسال شود ، فروشندگان کوچکتر احتمالاً با سفارشات خودشان پاسخ خواهند داد. از آنجا که پیش بینی این امر وجود دارد ، می توانید از موج جلوتر بروید و در زمره اولین کسانی باشید که به فروش می رسانند ، این بدان معناست که با سرد شدن افت قیمت می توانید به راحتی دوباره خرید کنید.

باز هم ، تا زمانی که داده ها از طریق کانال های صحیح جمع آوری می شوند ، این روش غیرقانونی نیست و بسیاری از معامله گران در با استفاده از معاملات الگوریتمی این روش را برای انتخاب خود انتخاب کرده اند.

از کجا می توانم تجارت و معاملات الگوریتمی را با ارز رمزپایه شروع کنم؟

وب سایت های بسیاری وجود دارند که الگوریتم های تجاری متنوعی را ارائه می دهند ، سپس می توانید به تبادل دارایی دیجیتال مورد نظر خود متصل شوید.

خدمات کاملاً محدودی وجود دارد که می تواند شما را به سرعت با معاملات الگوریتمی تنظیم کند. سایتهایی مانند TradeSanta ، Bitsgap و Cryptohopper همه انواع مختلفی از حساب را ارائه می دهند که بسته به اینکه چه ابزارهایی در دسترس هستند ، می توانند از رایگان تا گران قیمت باشند. برای مبتدیان ، یک حساب رایگان به طور کلی گزینه های زیادی برای شروع به شما ارائه می دهد ، اما اگر به دنبال حرفه ای شدن باشید حساب های پولی می تواند بسیار مفید باشد.

این سایت ها به طور کلی آموزش و سایر مطالب را ارائه می دهند تا بتوانید در زمینه یافتن ربات ها و استراتژی های مناسب برای شما آموزش ببینید. اگرچه هر سرویس با هر صرافی سازگار نیست ، اما خواهید دید که اکثر این محصولات تقریباً از همه بزرگترین و محبوب ترین صرافی ها پشتیبانی می کنند. حتی برخی از آنها تبلیغات ویژه ای برای استفاده از ربات های خود در ارتباط با یک سیستم عامل خاص دارند ، بنابراین کاربران باید گزینه های زیادی برای انتخاب داشته باشند.

مسلماً تکنیک ها و خدمات بیشتری وجود دارد که می توانید آنها را کشف کنید ، اما این راهنما باید اصول اولیه لازم برای رفتن به آنجا و شروع کردن را با تجارت و معاملات الگوریتمی به شما ارائه دهد. آهسته پیش بروید و هر آنچه را که می توانید بیاموزید و طولی نمی کشد که تصمیم می گیرید که آیا یک استراتژی خودکار برای شما مناسب است؟

معافیت‌های مالیاتی بر نقل و انتقال سهام ادامه‌دار می‌شود؟

معافیت‌های مالیاتی بر نقل و انتقال سهام ادامه‌دار می‌شود؟

در حالی که بسیاری تصور می‌کردند کاهش مالیات بر نقل و انتقال سهام شرکت‌های بورسی از نیم درصد به یک دهم درصد دائمی است، به تازگی اعلام شده که این معافیت مالیاتی صرفاً برای سال ۱۳۹۷ بوده و شورای عالی هماهنگی اقتصادی مصوبه‌ای در این مورد برای سال ۱۳۹۸ ندارد، در این میان سازمان بورس اعلام کرده تلاش می‌کند این معافیت مالیاتی در سال جدید نیز اعمال شود.

به گزارش ایسنا، مالیات بر نقل و انتقال سهام در شرکت‌های غیر بورسی چهار درصد ارزش اسمی است و این مالیات برای شرکت‌های بورسی تا اواسط سال ۱۳۹۷ معادل نیم درصد بود اما در تیر ماه گذشته، وزیر اقتصاد وقت اعلام کرد که "برای تشویق بیش‌تر مردم به سرمایه‌گذاری در بورس از این پس نرخ (کارمزد) نقل و انتقال سهام و حق تقدم از نیم درصد به یک دهم درصد کاهش می‌یابد و این سیاست موجب افزایش نقدشوندگی در بازار سهام خواهد شد".‌

در نهایت، شهریور ماه سال ۱۳۹۷ تصویب شد که مالیات بر نقل و انتقال شرکت‌های بورسی از نیم درصد به یک دهم درصد کاهش یابد که رئیس سازمان بورس این رویداد را اتفاقی مثبت یاد کرد و با اشاره به معاملات الگوریتمی و معاملات با فرکانس بالا، گفت: اگر تعداد معاملات در بازار سرمایه با استفاده از این مکانیسم‌ها بالا رود مقدار مالیات دریافتی دولت کم نخواهد شد. مثلاً اگر با معاملات با فرکانس بالا تعداد معاملات رشد کند و به جای یک معامله در لحظه پنج معامله انجام شود، مقدار مالیات کم نمی‌شود.

اما به تازگی سازمان بورس اعلام کرده است که کاهش مالیات نقل و انتقال سهام از نیم درصد به یک دهم درصد فقط مربوط به سال ۱۳۹۷ بوده است مگر این که برای سال ۱۳۹۸ هم مجدداً دستور العمل جدیدی از سوی دولت ابلاغ شود که در این صورت نیاز به مصوبه خواهد داشت.

حسن امیری، معاون نظارت بر ناشران سازمان بورس در این مورد گفته که "کارمزد معاملات سهام ۱.۵ درصد بود که سال گذشته بر اساس مصوبه شورای عالی هماهنگی اقتصادی با حضور سران سه قوه مالیات نقل و انتقال سهام که ۰.۵ درصد از این ۱.۵ درصد را شامل می‌شد به ۰.۱ درصد کاهش یافت. اما این مصوبه تنها برای سال ۹۷ بود و در سال جدید مالیات سهام بر اساس قانون مالیاتی همیشگی اعمال شده است، یعنی قانون مالیات‌ها در این مورد ثابت بوده و فقط بر اساس مصوبه جلسه شورای عالی هماهنگی اقتصادی با حضور سران قوا در سال ۹۷ چنین تخفیفی لحاظ شده است".

امیری تاکید کرده که "سازمان بورس درصدد این است که از طریق اصلاح قوانین و مقررات و یا اخذ مصوبه جدید از شورای عالی هماهنگی اقتصادی مجدداً این موضوع را احیا کند و مالیات نقل و انتقال سهام کاهش یابد".

حال باید دید که آیا در سال ۱۳۹۸ هم این کاهش مالیات برای شرکت‌های بورسی لحاظ می‌شود یا خیر؟



اشتراک گذاری

دیدگاه شما

اولین دیدگاه را شما ارسال نمایید.